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ABSTRACT

Discretization formulas for the-digital simulation of the dif--

fusional processes associated with a variety of electrochemical processes

at a spherical electrode are given. The formulas are based on orthogonal

collocation techniques. Several mechanisms are represented, and the

technique is demonstrated for chronoamperometry, chronopotentiometry,

and cyclic voltammetry.
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Orthogonal collocation techniques for the simulation of second

order partial differential equations havebeen demonstrated for a

variety of problems in electrochemistry (1-7], chemical engineering

[8-11], differential scanning calorimetry [12], and other fields [13].

The advantages over other methods have been described, but noteworthy

i s generally increased accuracy for decreascid computational effort

(1-71.

In electrochemical diffusion problems, the algorithms needed to

compute concentration profiles, chronopotentiograms, chronoamperometric

responses, spectrophotometric responses of individual species, cyclic

voltammograms, and chronocoulometric responses, all to planar electrode

configurations, have been given. This paper deals with some of the

same experiments appiied to a common configuration, the static

spherical electrode (Figure 1).

The programs for solving the equations described herein have

been given [7]. Basically, the orthogonal collocation technique is

implemented by the following steps:

1. Make the Fick's laws equations suitably dimensionless.

2. Discretize the resulting equations at the roots (zeros) of an

orthogonal polynomial of suitable symmetry. The resulting set of

equations are now first order ordinary differential equations.

3. Integrate the set of simultaneous differential equations to obtain

the set of concentration profiles with respect to distance from

the electrode surface and with time.

4. Use these concentrations in the suitably discretized equatjoils

to obtain the desired electrochemical parameter (current, absor-

bance, etc.).

* r
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Chronoampe rome try

We will only consider diffusion on the solution side of the

electrode-solution interface. For a chronoamperometric experiment on

the simple charge transfer nmchanism at a sphe'-'cal electrode

ne
A _ (1)

we have the following imposed conditions:

[A]R, = [A]T = [A°]

[A]r0,T = [B], T = JB]R,= 0 (2)
r01TI = B] =

( 6R R-r 6R / R-R -)R=r 0  O R -=r 0

where R is the distance parameter (radial) from the center of the

spherical electrode and r0 = the radius of the electrode. Since

interpolation methods using orthogonal polynomials are simpler to use

in a [0,1] interval, we will define M as some distance in the R

direction such that no diffusion effects are experienced there during

the time frame of the experiment. The differential equation for the

A species is:
2

6[A] DA [A] 2DA=_ 4 _[A] (3)
6T 6R 2  R 6R

For dimensionless variable., we choose

[A DT R-r 0 (4)(M-r) 2 M-r 0

We note then that



(M-ro 2

dT = dt, andDA
A

(5)

dR = (M-r0 )dr

Substitution of the new variables (4) into (3) gives

DA[A 0 ]6cA DA[AO ] 6 2 cA 2DA [A]6cA (

(M-r0 ) 
2 6t (M-r 0 ) 2 6 r 2  (M-r0 ) r + r 0 (M-r0 )6r

which, after simplification, leads to

2
6cA 62c 2 6cA

A A + (7)

6t 6r2  r + 6r

where

r0
M-r 0

The general spatial derivatives in terms of their polynomial inter-

polation coefficients [1 are given by

(21RX)X A. .' Q(X.j t) (a( ) =X i  j=l lij ,

B. . Q (X t ) 
(8 b )

d X=X i  ~

where N is the order of the approximation polynomial chosen, the Xi

represents f-he roots of that polynomial collocation points, and the

A.. and Bij are given by [101

1) 1J
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dAX [ 0 /dX dX 1/dX ---- 1X+2 ][jl[Aj = x d0 /dX S (9)

dX+ 2/dX - dN /dXN2N+2

and

-2 0 /X2 d2 1 2 ---- d2 N+2 d - 1I

[B..] 2 0 /C"2 S(10)

[d 2 X 0/dX 2 ---- d 2 XN2/dXj J
The matrix [S] is given by

x0  x0

[S] X 1 ----
X 0 .N+2J
N+ 2 N+ 2

The algorithms for finding the roots of any orthogonal polynomial and

the corresponding [A.j] and [B. I matrices have been given previously

[9]. The N+2 terms arise because X=0 and X=l are included as roots to

the orthogonal polynomial. The concentration profile will be eval-

uated at the collocation point, i.e. at coencentric spheres surrounding

the spherical electrode. Each sphere has radius r=X Xetc.,

i.e. at the collocation points.

Equation ( 7) is thus written in terms of (Ra) and (8b) at the

discrete points X.:
1

dc A 14+2 2 N42
= E B.0- t + Z Aij.c(r t) (12)

r=Xi j=l A r1 j:-l i A '
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Thus we have N+2 simultaneous first order differential equations to

solve for the N+2 c (r t) unknowns. Any one of several methods may

A j
be used for solving this system of equations 11,4,91.

Inserting the boundary conditions (2 ) further defines the

electrochemical method used, and reduces the number of equations from

N+2 to N. This is done by first expanding equation (12) partially,

exposing the boundary points at rl =XI=0 and rN+2=XN+2=1:

dcA N+1

ri=Xi  = BilCA(Ot) + BiN+2CA (lt) + j 2 B ijCA(ri t) +
2 (,t +A 1 )A j2 )(rt

+O i leA AiN+2cA (lt) j=2 AijA rt) (13
ri  j,

We have from the original boundary conditions (2) that cA(0 ,t) 0

and cA(l,t) = 1, so that (14) becormes

= Bi + E B (r. t)+ 2-A + E A CA (rj t (14

dt ri=Xi  i,2 j2 ijeA , i,N+j j=2 Ji A it

So we have one equation to solve at each of the N interior collocation
points Xi , i = 2, ...N+1 for the N unknown cA(rj,t).

The concentration profile for the B species is derived similarly,

and leads to identically the same result as equation (12):

dcB N+2 N+2
= 4 B. I c (r. t)+- 2 - Y AjcCB(r. t) (15

d ri=X jl jB ' ri+' 1j B

Partial expansion leads again to equotion (13) with c B(r Jt) substituted

for the c A(r. t) . However, even though it is true that one boundory

A j



Bcondition, cB(i,t) I may be immediately substituted, the other boundary

condition c B(O,t) is not known explicitly. This problem is easily

resolved in collocation methods. We observe that the flux relation

dc A - dcDAr = -DBd (16

dr rl =X,=O dr r1=X1 0

We will let D A=D B here for convenience even though it presents no

problem in setting up the equations if we do not [1,4]. The flux

relation is replaced by equittion (8a) on each sftde:

N+2 N+2
E A1 jc A ( r j t) = - A c B (r t) (17).i=l i l '

Partially expanding so that known condition r may be insc'rted, we have

N+1
AIc'A(Ot)+AIN 2 CA(lt)+ Z A CA ( r . t) =

i=2 ljAj

N+1
-[A icB(r )+A c (l,t)+ E A C(r W (18)' jt 1,N+2 B i=2 B-

Inserting known quantities, we deduce

N- 1 N+l
A1,N+2+ F A1 , c (rj t) = -[AI,IcB(O,t)+ A C (rj t)] (19)

i=l jCA ' i--2 A I j ' (9

Solving for our unknown bounidry condition,

N+]
CB (,t) U + F CI',j (cA (r' t) + C(r jt)) (20)

where

- 4r.,
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A 1,N+2
S 1 , , and

AlI

l,j A1 ,1

We can now substitute this explicit value for cB (O,t) in equation

(15), along with cB (l,t) = 0 to obtain the equation necessary to

represent the concentration profiles for B:

dcB  N+I N+I
V. + E D.C (r. t) + E E. .c(r t)r.=X. 1 j=2 1) A j' j=2 Eij

where, 2Ai ,
U

V. = B. T +
1 1+

1J1

E..B.. +C. + +1 + r+

Again we have N equations in the N unknown c B(r. t) to solve

simultaneously.

Table 1 compares results obtained for the current obtained by

equation (33) and the analytic solution for this case, which is

nFADA/2 A [AO] nFAD A [ 
0 ]

i 7T /2T]/2 + r0

We use, by examplc, DA 1. : 10 - 5 cm 2 s- 1 [- 6 moles c

2 4
A = irr 2 , r 0  0.1 cm, and n 1. . for the examp.le was 10

For the mechanism,

f~
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k
A -_ B - C

the profile for the A species is the same as equation (14). The B

species has a different profile due to loss of material through the

chemical reaction, i.e.

2 2DB ' [B]6[B DB2 + k[B] (231

6t 6H2  R 6R

After dicretizt.io,-n to the collocatioi points and insertionl of the

dimensionless variables ( 4 ) , we have

dcBI N+2 2 N+2
= Z B., (r t) + Z A. C (r t) - acB(rit) (241

tr.i=X. j=1 i,j B it r 1+B j=1 I#] B if, cB~r t)

where k(M-r )2

a DB

Continuing precisely as for the simple electron transfer case,

except with the addition of this last chemical kinetic term, we find

that

dc B N+1 N+1
= V.+ D..c (r t)+ E E.c (r j t)- a c B (r t) (25

r.X 2 j=2 lc~ a~ 2

For the catalytic mechanism

k
A-B -+C - A (26

both the A and B profiles are modified by the presence of the chemical

reaction. The differenti;al equations are
2 2D 6[A1

D .A + 4 kIB) (27
6t A R2 R 4R-

"[13) 2 2 1

6t DB 2 + OR k 131

The boundary conditions are exactly as the previous cases, so that

discretization j the samc. We find that
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dcA N+1 2N+i
=B+ +)- BC(r7+[A + E2AiCA(r t)]+

dt r.=X. iN+2 ji=2 A ' ri+ ,N+ j_,I

!~ c(rj t) (28)
B 1

dcB , N+l N+l
dt+ , D ijCA(r ift) + 1: E -- (r -t) -c cB(r t) (2 9

r.=X 9=2 j=2 1 1B J'

again letting :. = B

To calculate the current at any time for the mechanisms listed

above under the chronoamperometric experiment, we note the following:

i = nFAD (W

where A is the electrode surface area and F is the Faraday constant.

The flux term is convexted to dimensionless terms by insertion of

the newly defined variables (4).

i = nFAD[Ac) 0 (31
M-r0 (dr )rl=Xl= 0

The flux term may then be discretized to

N+I
nFADA [A1  (Ot)+AI  c (lt)+ Z A c (r. ) (32

M- , A1N2A j= 1,j A iti=M~0 ,jA, ,+2A = 2  ,

or

nrAD A01N+l

i [A + F A (r t)
M-r0 1,N+2 =2 jCA '

after insertion of the known values of CA (0,t) and cA(1,t).

So the current i may bc calculated at any time

(M-r0 2t

T 0 by insertion of the calculated concentrations from1.
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equations (14) or (28) into equation (33). If there are ad-

ditional electroactive species in the mechanism, their contribution

is simply added into equation (33), since generally,

i nFAD[A0 ] m /dCn
r- (34)n=l r=X 1=0

where m is the total number" of electroactive species.

The charge or spectroelectrochemical absorbance can be cal-

culated by use of Gaus.7ian quadrature weijhts [4,9,10] for the

integration of the current in time or the concentration profiles in

time.

glic Voltammetric Response

Several modifications have to be made to the method of Speiser

and Rieker 163 to develop the cyclic voltammetric responses for the

spherical electrode. We define new dimensionless time and distance

variables

SI DTa

(M-r0 )

and ) /2 (35)
(R-r0!Ir = Mr 0

where

a = n'v/R'T'

with v = the potential sweip ratu in volts s- , I' the gas constant,

and T' the temper-turc-. Thu!;,

(M-r 0) 2 dt
d0 T 'ID

and



. (M-r 0)dr (11/2(36)

a

For the simple electron transfer reaction (1), the differential

equation ( 6 ) becomes

aD[A0 ]6c A  aD [AO]6 2 cA 2D[A0 j 6c AA =r2 _- (37)
(M-r0) 2 6t (m-r) 26r 2 ((M-r 0 ) r4 r 0 ) (M-r 0 ) r

which simplifies to

2 /6 cA 6cA 2a' 6cA
- + (38)

6t 6r2  r+$ 6r

The derivation now proceeds as described by Speiser and Rieker

[61].

The cyclic voltammetric boundary conditions are

[A]R = [A]., t  [A0]

[B] = [B].,t = (

(39)1

6[A] 6[A]
6R _ 6R

R=0 R=0

[] exp nF/R'T' (E - E)] =A/BS (t)
[B]0, T  /AB

Inserting the potential sweep rate (14) v, we have

0 exi~) f nF/R 17T1(r, - EA/B 'A/B -STAR T

cxp(-nFvT/R'T') exp(-aT) for T '-TA (40)

exp(at - 2aTl) for T T _- 2T
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where T is the time when the forward potential sweep is reversed.

We convert equations ( 39 ) to dimensionless form normal-

ized to t and M:

cA(rO) = CA lUt) = 1

cB (rO) = cB(ilt) = 0

( r)r= 0  <- r r0(41)

CA (0,t)
c(O=t) 

- A/BS (t)
CB(0,t)

Discretizing using equations (8a) and (8b) on (38), we have

dcA N+2 2a1/ 2  N+2
E j B 'c (r t) + E A cA(r t) (42)

tr =X1 j=1 ii A i1  r +i j=1 ij A it

or after partial expansion

dCA I N+IA =B. IcA(O,t)+B c (l,t)+ E Bi.C (r. t) +
dt rAx i,N+2cA j i A

* 2a1 /2  N+1
r+ [Ai CA(O,t)+A CA (l,t)+ E A CA(r. t)] (43)

2.l i,N+2 A j-2'A iTi ' j 2 1

Inserting the explicit boundary conditions, we have

dcA N+1 (rI)=Bi.lCA(0,t)+BiF+2 B (. t) + AOlt

d- r, =XA j-2Bij'A it r i illA

N41
A i ,N42 

+ E A (r it) ] (44)j:. 2Ai
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Identical treatment for the B species yields

dcB N+1 2ai/ 2

d Irix=B i' C B(0't)+j--2BijCB (r t) -#. r.+a [A i'l CB(0't) +

r B C ~ j-2 it r.3 1

N+1
I Aic (r. t) (45)
j=2 i3 B if

We discretize the flux relation in (41) to get an equation relating

CA (O,t) and c B(Ot), presently implicit boundary conditions.

N+2 N+2
A. c (r t) = - A r  t) (46)1

__ 'A j, 3,Jcp B jj=l ' J' jl 1

Rieker and Speiser [61 showed that after expansion of equation

(46), one may then substitute in equation (44) and arrive at the

following result giving the time (potential) dependeiice of cA(O,t)

and cB(Ot):

eA/BSI (t) N+1
cA(0,t) AA,+ AI j(cA(rjt)+cB(r. t))

(47)

1 N+1c B(0,t)= - - WI, S .... A .... + F A .(c_(r. t)+c_(r, t))
c~t) AI[-+A/B , j=2

Inserting these time dependent boundary conditions into the dis-

cretized equations (44) and (45) yield the 2N simultaneous first order

differential equations necessary to solve for the concentration profiles

in time:

dcA N+l N1
M-W. + F F..c (r. t) + ) G cB(r t)

rj=2 1 A j=2 2) B if
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(48)

dc, N+1 N+1
I =X.+ Z H c(r )+ 7.I cB(r. )dtr.=X. I j=2 iij , j=2 ij B ,

with
(2) 1/2Ct) /

AIl[I+OA/BS (t) ] i, i1,N+2 ri-4- i- , 1,N+2

B. 21l/2 Ai,N+2 r+ i,N+2

1a/2 A
2a1/2 2a A A jA/SSX(t)

F.- B.'f2a A - ___i, 1 1'J 1/
1. = - +p i3 (ri+ )A 1,1 [ IA/B S (Xt

Bi , IA ,jOA/BSA (t)
AI,l1I-0A/BSX (t) ]

S A/BS (t) 2al/ 2A. A
G..- -[B A+~ (+Sl1Il+eA/B S x (t)]i, j 1

1 2a1/2 A A
A,1 [1+e0A/BSx (t)] [Bi,lAl,N+2 rif r i

2112 2aA 1/2 ,_j
2a/2A

B.j .i + ri A.. - (ri+ ,)AIL4B/S~)

BI, _AI0.j

AI, [+0A/BS (t)]

The 2N equations (48) are solved simultaneously as befoce

to find the cA (r. t.) and CB.( t).

The current response is represented similar to the chroioatmp-

erometrie casc.:

l..i ' _ ...D. - D (49)
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or in the dimensionless space

nFADA[AO]a1/ 2 (dcA(
(M-r0) d -- r 1 =X 1=0

Discretizing the flux and inserting the boundary conditions leads to (6)

dcA 1 N+I (r S (t)

drjr = I+(, S(t) [A1,N+2+EAj2 Ar rl=XI  A/B X j cAr=20ABxt

N+I
E A c (r j t)] (51)

j=2 1,3 B JD

So that

nFADA [AO]al/ 2  N+1
= - (M-ro) +-I+A/BSx(t) [A1 ,N+2+ j2A,j cA(r j ,t)OA/BSX(t)

N+1
Z A1 cB(r t) (52)i j=2 'jcBr

The concentrations cA(rit) and c B(r i,t) found at each time

T= (M-r0 ) 2t/aD are used in equation (52) to determine the current

as a function of time and hence potential by the relation

(M-r 0 ) 2tR'T'
E RT + nFD t t

E=(M-r0 )2tR'T' 5

IE START + 2vt X nFD t s t . 2t

wherb t is the dimensionless potential sweep reversal time

aDT
t - 2(I-I-r 0 )

I
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Chronopotentiometry

The chronopotentiometric case for planar electrodes was described in

a previous paper. For a chronopotentiometric response to the simple

reversible charge transfer reaction, we must consider the following

conditions:

[A]r, 0 = [A] = [A']

[B] = [1].,T =0 (54)

e R'T'
E + E A/B n n]r

r0

6R n) 6R
0 6 B R r0i (55)

Tnhe A 6r R= OConstant

The new dimensionless parameters are

t = T/T r 0 (56)
M-r 

0

with T the transition time of the experiment. Insertion of these

values into the differential equation (3) and simplification yields

6CA 6 2CA 2a 6CA
+ (57)6t 6r 6+ 6r

where
Dr

aZ =

(-r 0)

The conditions (54-55) in dimensionless form become

S
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cA(r,0) = CA(lt) = 1

CB(r,O) c B(lt) = 0 (5

rCA-)r ""t---)r 0

6r )r 6r)r1/

nFAD[A ] (dcA , nFAD / 2C11 /2 nFADl/ 2 [AO cx/2(dCA5

(M-r0) dr r 11/2 1/2 d-arr

The flux relation at the electrode is given from (8a)

(dc N+2
(cA

dr 0  E A1  c A (rj,

k Jr 0  j=l 'J A

(60
(d N+2c. Ed-- A 1 1  c B  (r j '

Upon entering the known boundary conditions and expanding, and

then substituting these into (59) we have

N+1
C Al,t) = Q - E aJcA(r t )

Sj=2 (6
N+1 (61

C (Ot) = R - E a.c (r.
B ~ j=2 3 B 'j,t

with

1 i- 1/2

A 1  nFA[A]D 1N

R iT1/2

AA nFAIAOD

a j
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The discretized equations for A and B are thus

dcAl N+2 N+2
-AI = E B (r t) + A. FA C(r. t)
d ri=xi 

= _ij cA  i ri+ j =1 ij , (2

dc BI N+2i . t) + 2 N+2 
(6B)

=i B. c Cr t) E A. c B (r t)
ji 1  j= 1

The known boundary conditions from equations (58) and (61) are

entered, and we have

dcA a N+1
~-~_ =xQ! + a r b. C(r t)dt r.=X. j=2 ij A i'

4 (63)

dcB 
= 

N+1

= aR! + a y b. c (r t)
dt =Xi  j=2 '

where
2a

QB Q + B + s (A. 11.1 il i,N+2 r.+ ll i,N+2
1

2Ai 1R

R! R B. R +1 1

b. = -Bi aj + B.= 2 (A. a~ A..

R) = i,1 r.+ r+ a

bi3 ~~ ~ -B a i + ( i lla - Aij)

The usual display of the response is given by

e0 Of(t)
E=E R'T' l1 B - (64)A/B 0F (0,t(A /

where the two concentration terms in brackets are found from equaLion

(61). The concentzation t;ms in (61) are found by integration of the

simultaneous equation (63) by tiLt methods described 1],4,5,9) previously.
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Table 1

1 Time, sec iexact , ma sinuiated ma

1 X 10- 5  1.7104 1.7104

1 x 10- 4  0.5411 0.5412

1 x 103 0.17]3 0.1712

1 X i0 2  0.0054 0.0054

1 x 10-1 0.0017 0.0017

1 x 100 0.0001 0.0001

Comparison of exact and -simulated currents for the sinple

change transfer chronoamperometric experiment. (N 6

A collocation.points.) See text for parameters.

ii

d,



FIGURE CAPTION

Figure 1. Spherical electrode geometry.
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